Injection Molded of Bio-Micro-Composites from Natural Fibers and Polylactic Acid
Abstract
Green composites were needed by automotive industries because they are environmentally friendly, recyclable, lightweight and strong. Natural fibers such as bamboo and sisal are potential source of these materials and can be used as substitutes of fiber glass which is hard to recycle and not renewable. In this experiment, bio-composites made from micro fibers of betung bamboo (Dendrocalamus asper) and sisal (Agave sisalana) mixed with a natural polymer of polylactic acid (PLA) were developed that may used for automotive application. Bamboo or sisal fibers were converted into pulp and processed using a disc refiner to produce microfibrillated cellulose (MFC) with fiber diameter around 10 µm. MFC was mixed with PLA and triacetin and dried. The mixture was processed in a mixer at temperature of 170ºC, speed of 60 rpm for 20 min. The compound mixture was removed and processed into pellets using a pelletizer at 170ºC. Pellets were processed using injection molding machine. The compositions of fibers/PLA were 10/90, 20/80, and 30/70. The mechanical properties were tested in accordance with ASTM standards. Result shown that optimum composition ratio of bamboo fibers/PLA was 20/80 which gave flexural strength of 62.30 MPa, flexural modulus of 3.89 GPa, tensile strength of 44.55 MPa, tensile modulus of 1.20 GPa, and hardness of 112.90 R. While the optimum composition ratio of sisal fibers/PLA was 30/70 which gave flexural strength of 67.83 MPa, flexural modulus of 4.43 GPa, tensile strength of 48.18 MPa, tensile modulus of 1.13 GPa, and hardness of 110.50 R.
Keywords
Full Text:
PDFReferences
Abe, K.; S. Iwamoto; H. Yano. 2007. Obtaining Cellulose Nanofibers with A Uniform Width of 15 nm from Wood. Biomacromolecules 8: 3276-3278.
Arzondo, L.M.; C.J. Perez; J.M. Carella. 2005. Injection Molding of Long Sisal Fiber-reinforced Polypropylene: Effects of Compatibilizer Concentration and Viscosity on Fiber Adhesion and Thermal Degradation. Polymer Eng. and Sci. 2005:DOI 10.1002/pen.20299.
Arzondo, L.M.; A. Vazquez; J.M. Carella; J.M. Pastor. 2004. A Low Cost, Low-fiber-breakage, Injection Molding Process for Long Sisal Fiber Reinforced Polypropylene. Polymer Eng. and Sci. 44 (9): 1766-1772.
Bismarck, A.; S. Mishra; T. Lampke. 2005. Plant Fibers as Reinforcement for Green Composites. In: Natural Fibers, Biopolymers, and Biocomposites (Eds.: Mohanty, Misra, Drzal). CRC Press. p. 37-108.
Bledzki, A.K.; O. Faruk; V.E. Sperber. 2006. Cars from Bio-Fibers. Macromol. Mater. Eng. 291:449-457.
Bogoeva-Gaceva, G.; M. Avella; M. Malinconico; A. Buzarovska; A. Grozdanov; G. Gentile; M.E. Errico. 2007. Natural Fiber Eco-composites. Polymer Composites-2007. DOI 10.1002/pc.
Chow, P.; D.S. Bajwa; W. Lu; J.A. Youngquist; N.M. Stark; Q. Li; C.G. Cook. 1998. Injection-molded Composites from Kenaf and Recycled Plastic. Proceedings of 1st Annual American Kenaf Society Meeting, San Antonio, TX, February 1998, pp. 38-42.
Godavarti, S. 2005. Thermoplastic Wood Fiber Composites. In: Natural Fibers, Biopolymers, and Biocomposites (Eds.: Mohanty, Misra, Drzal). CRC Press. pp. 347-389.
Huang, X.; A. Netravali. 2009. Biodegradable Green Composites Made Using Bamboo Micro/nano-fibrils and Chemically Modified Soy Protein Resin. Composites Science and Technology 69:1009-1015.
Iwatake, A.; M. Nogi; H. Yano. 2008. Cellulose Nanofiber-Reinforced Polylactic Acid. Composites Science and Technology 68: 2103-2106.
John, M.J.; S. Thomas. 2008. Biofibres and Biocomposites. Carbohydrate Polymer 71: 343-364.
Leao, A.L.; R. Rowell; N. Tavares. 1998. Applications of Natural Fibers in Automotive Industries in Brazil – Thermoforming Process. Prasad et al. (eds). Science and Technology of Polymer and Advanced Materials. Plenum Press, New York. pp. 755-761.
Lee, S.H.; T, Ohkita; K. Kitagawa. 2004. Eco-composite from Poly (Lactic Acid) and Bamboo Fiber. Holzforschung 58: 529-536.
Li, Y.; Y.W. Mai; L. Ye. 2000. Sisal Fibre and Its Composites: A Review of Recent Developments. Composite Science and Technology 60: 2037-2055.
Ljungberg, N.; B, Wesslen. 2002. The Effects of Plasticizers on the Dynamic Mechanical and Thermal Properties of Poly (Lactic Acid). J Applied Polymer Science 86: 1227-1234.
Marsh, G. 2003. Next Step for Automotive Materials. Materialstoday, April 2003, Elsevier Science Ltd. pp. 36-43.
Mathew A.P.; K. Oksman; M. Sain. 2005. Mechanical Properties of Biodegradable Composite from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC). J Applied Polymer Science 97: 2014-2025.
Misra, S.; A.K. Mohanty; L.T. Drzal; M. Misra; G. Hinrichsen. 2004. A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites. Macromol. Mater. Eng 289: 955-974.
Mohanty, A.K.; M. Misra; L.T. Drzal. 2002. Sustainable Bio-composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J. Polymers and the Environment 10 (1/2): 19-26.
Mohanty, S.; S.K. Nayak; S.K. Verma; S.S. Tripathy. 2004a. Effect of MAPP as Coupling Agent on the Performance of Sisal-PP Composites. Journal of Reinforced Plastics and Composites 23: 2047-2063.
Mohanty, S.; S.K. Verma; S.K. Nayak; S.S. Tripathy. 2004b. Influence of Fiber Treatment on the Performance of Sisal-polypropylene Composites. Journal of Applied Polymer Science 94: 1336-1345.
Mueller, D.H.; A. Krobjilowski. 2003. New Discovery in the Properties of Composites Reinforced with Natural Fibers. J. Industrial Textiles 33 (2): 111-123.
Munawar, S.S. 2008. Properties of Nonwood Plant Fiber Bundles and the Development of their Composites. Doctor dissertation, Graduate School of Agriculture, Kyoto University, Japan.
Mutje, P.; J. Girones; A. Lopez; M.F. Llop; F. Vilaseca. 2006. Hemp Strands:PP Composites by Injection Molding: Effect of Low Cost Physico-chemical Treatments. J. of Reinforced Plastics and Composites 25 (3): 313-327.
Nakagaito, A.N.; S. Iwamoto; H. Yano. 2005. Bacterial Cellulose: The Ultimate Nano-scalar Cellulose Morphology for the Production of High-strength Composites. Applied Physics A 80: 93-97.
Nakagaito, A.N.; H. Yano. 2004. The Effect of Morphological Changes from Pulp Fiber Towards Nano-scale Fibrilated. Applied Physics A 78: 547-552.
Nystrom, B.; R. Joffe; R . Langstorm. 2007. Microstructure and Strength of Injection Molded Natural Fiber Composites. J. of Reinforced Plastics and Composites 26 (6): 579-599.
Oksman, K.; M. Skrifvas; J.F. Selin. 2003. Natural Fibers as Reinforcement in Polylactic Acid (PLA) Composites. Composites Science and Technology 63: 1317-1324.
Okubo, K.; T. Fujii; E.T. Thostenson. 2009. Multi-scale Hybrid Biocomposite: Processing and Mechanical Characterization of Bamboo Fiber Reinforced PLA with Microfibrillated Cellulose. Composites: Part A 40: 469-475.
Okubo, K.; T. Fujii; Y. Yamamoto. 2004. Development of Bamboo-based Composites and their Mechanical Properties. Composites: Part A 35:377-383.
Panthapulakkal, S.; M. Sain. 2007. Injection Molded Short Hemp Fiber/glass Fiber Reinforced Polypropylene Hybrid Composites-mechanical, Water Absorption and Thermal Properties. J. of App. Polymer Sci. 103:2432-2441.
Renner, M. 2008. Vehicle Production Rises, But Few Cars are “Green”. http://www.worldwatch.org/node/5461.
Shibata, S.; Y. Cao; I. Fukumoto. 2008. Flexural Modulus of the Unidirectional and Random Composites Made from Biodegradable Resin and Bamboo and Kenaf Fibres. Composites Part A 39:640-646.
Subyakto; E. Hermiati; D.H.Y. Yanto; Fitria; I. Budiman; Ismadi; N. Masruchin; B. Subiyanto. 2009. Process Development to Produce Cellulose Nanofibers from Sisal (Agave sisalana) and Betung Bamboo (Dendrocalamus asper). Berita Selulosa 44 (2): 57-65.
Subyakto; E. Hermiati; D.H.Y. Yanto; N. Masruchin; Fitria; K.W. Prasetiyo; Ismadi. 2010. Biocomposites of Polylactic Acid Reinforced with Sisal or Bamboo Micro Fibers. Proceedings of the First International Symposium of Indonesian Wood Research Society 2-3 November 2009. pp. 106-110.
Suddell, B.C.; W.J. Evans. 2005. Natural Fiber Composites in Automotive Applications. In: Natural fibers, biopolymers, and biocomposites (Eds.: Mohanty, Misra, Drzal). CRC Press. pp. 231-260.
Suryanegara, L.; A.N. Nakagaito; H. Yano. 2009. The Effect of Crystallization of PLA on the Thermal and Mechanical Properties of Microfibrillated Cellulose – Reinforced PLA Composites. Composites Science and Technology 69: 1187-1192.
Turbak, A.F.; F.W. Snyder; K.R. Sandberg. 1983. Microfibrillated Cellulose, A New Cellulose Product: Properties, Uses, and Commercial Potential. J Appl Polym Sci: Appl Polym Symp. 37: 815-827.
Wambua, P.; J. Ivens; I. Verpoest. 2003. Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics?. Composites Science and Technology 63: 1259-1264.
Zhang, J.; H. Song, L. Lin; J. Zhuang; C. Pang; S. Liu. 2010. Microfibrillated Cellulose from Bamboo Pulp and Its Properties. Biomass and Bioenergy (2010), doi:10.1016/j.biocombioe.2010.06.013.
Zimmermann, T.; E. Pohler; T. Geiger. 2004. Cellulose Fibrils for Polymer Reinforcement. Advanced Engineering Materials 6 (9): 754-761.
DOI: https://doi.org/10.51850/wrj.2011.2.1.21-26
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Wood Research Journal
Indexed by:
Copyright ©Wood Research Journal
ISSN: 2087-3840, EISSN: 2774-9320

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








