Catalytic Process in Producing Green Aromatics through Fast Pyrolysis of Wood of Five Tropical Fast Growing Trees Species

Joko Sulistyo, Toshimitsu Hata, Ganis Lukmandaru, Yunida Syafriani, Sensho Honma

Abstract


The generation of liquid fuels and chemicals is potential through a catalytic fast pyrolysis (CFP) which is a rapid, inexpensive, and promising method utilizing tropical wood biomass as starting material. There is a little known in the potential of wood biomass from tropical fast-growing trees as starting materials for the production of liquid fuel and chemicals. In this study the formation of aromatics by pyrolytic-gas chromatography/mass spectroscopy (Py-GC/MS) is evaluated on the effect of wood species with different characteristics and its cellulose component to the formation of aromatics. Fast pyrolysis of eucalyptus wood characterized with low content of ash and high percentages of hollocellulose and α-cellulose produced much high relative peaks of levoglucosan and small relative peaks of lignin derived products. Meanwhile high content of vollatile matter and high crystallinity of cellulose attributed balsa and jabon woods as feedstock for fast pyrolysis. The catalytic process in fast pyrolysis of eucalyptus decomposed the most of oxygenated compound such as levoglucosan and furfural into aromatics in the presence of ZSM-5. Coke formation on the surface catalyst might lead partly of decomposition of levoglucosan and furfural to form aromatics in the catalytic fast pyrolysis of balsa wood. Cellulose component determined on the formation of benzene, toluene, styrene, p-xylene, indane, indene, and naphthalene in catalytic fast pyrolysis of wood.


Keywords


aromatics; catalytic fast pyrolysis; Py-GC/MS; wood characteristics; ZSM-5 catalyst

Full Text:

PDF

References


Azeez, A.M.; D. Meier; J. Odermatt; T. Willner. 2010. Fast pyrolysis of African and European lignocellulosic biomasses using Py-GC/MS and fluidized bed reactor. Energy and Fuels 24: 2078-2085.

Azeez, A.M.; D. Meier; J. Odermatt. 2011. Temperature dependence of fast pyrolysis volatile products from European and African biomass. Journal of Analytical and Applied Pyrolysis 90: 81-92.

Boateng, A.A.; C.A. Mullen; C.M. McMahan; M.C. Whalen; K. Cornish. 2010. Guayule (Parthenium argentatum) pyrolysis and analysis by Py-GC/MS. Journal of Analytical and Applied Pyrolysis 87: 14-23.

Bridgwater, A.V. 1996. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catalysis Today 29: 285-295.

Browning BL. 1967. Methods of wood chemistry. Volumes I & II. John Wiley & Sons. USA.

Carlson, T.R.; G.A. Tompsett; W.C. Conner; G.W. Huber. 2009. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Topics in Catalysis 52: 241–252.

Carlson, T.R.; J. Jae; Y. Lin; G.A. Tompsett; Huber GW. 2010a. Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogenous reactions. Journal of Catalysis 270: 110-124.

Carlson, T.R.; J. Jungho; L. Yu-Chuan; A.T. Geoffrey; W.H. George. 2010b. Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions. Journal of Catalysis 270: 110-124.

Corma, A.; F.J. Llopis; C. Martinez; G. Sastre; S. Valencia 2009. The benefit of multipore zeolite: Catalytic behavior of zeolites with intersecting channels of different sizes for alkylation reactions. Journal of Catalysis 268: 9-17.

Czernik, S.; A.V. Bridgwater. 2004. Overview of applications of biomass fast pyrolysis oil. Energy and Fuel 18: 590-598.

French, R.; S. Czernik. 2010. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology 91: 25-32.

Galadima, A.; O. Muraza 2015. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Conversy Management 105: 338–354.

Gomez-Serrano, V.; C. Valenzuela-Calahorro; J. Pastor-Villegas 1993. Characterization of rockrose wood, char and activated carbon. Biomass and Bioenergy 4: 355-364.

Gurgens. J.F.; M. Carrier; M.P. Garcia-Aparicio. 2014. Biomass conversion to bioenergy products. In Bioenergy from wood: Sustainable production in the tropics. Chapter 7. Ed. T. Seifert. Springer Science-Bussiness Media. Dordrecht.

Jia, L.Y.; M.Raad; S. Hamieh; J. Toufaily; T. Hamieh; M. Bettahar; G. Mauviel; M. Tarrighi; L. Pinard; A. Dufour. 2017. Catalytic fast pyrolysis of biomass: superior selectivity of hierarchical zeolites to aromatics. Green Chemistry 19: 5442–5459.

Jiang, L.Q.; A.Q. Zheng; Z.L. Zhao; F. He; H.B. Li; N.N. Wu. 2016. The comparison of obtaining fermentable sugars from cellulose by enzymatic hydrolysis and fast pyrolysis. Bioresources Technology 200: 8–13.

Kim, S.S.; J. Kim; Y.H. Park; Y.K. Park. 2010. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresources Technology 101 : 9797-9802.

McIncken, M.; L. Tyhoda. 2014. Biomass quality. In Bioenergy from wood: Sustainable production in the tropics, Chapt. 8. Ed. Seifert T. Springer. Dordrecht.

Mihalcik, D.J., C.A. Mullen; A.A. Boateng. 2011. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. Journal of Analytical and Applied Pyrolysis 92: 224-232.

Mohan, D.; C.U. Pittman Jr, P.H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels 20:848 – 889.

Saracoglu, E.; B.U. Basak; A.V. Esin 2017. Upgrading of fast pyrolysis bio-oil over Fe modified ZSM-5 catalyst to enhance the formation of phenolic compounds. International Journal of Hydrogen Energy 30: 1-11.

Poletto, M.; J.Z. Ademir; M.C.F. Maria; M.C.S. Ruth. 2012. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresources Technology 109 :148-153.

Rahman, M.M., L. Ronghou, C. Junmeg. 2018. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil: a review. Fuel Processing Technology 180: 32-46.

Sharma, A.; V. Pareek; D. Zhang. 2015. Biomass pyrolysis – A review of modelling, process parameters and catalytic studies renewable and sustainable. Energy Reviews 50:1081 – 1096.

Schultz, E.L.; A.M. Charles; A.B. Akwasi. 2016. Aromatic hydrocarbon production from Eucalyptus urophylla pyrolysis over several metal-modified ZSM-5 catalyst. Energy Technology 4:1-10.

Shen, D.K.; S. Gu. 2009. The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology 100: 6496–6504.

Shen, D.K.; S. Gu; A.V. Bridgwater. 2010. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR. Journal of Analytical and Applied Pyrolysis 87: 199-206.

Shen, D.; J. Zhao; R. Xiao; S. Gu 2015. Production of aromatic monomers from catalytic pyrolysis of black-liquor lignin, Journal of Analytical and Appled Pyrolysis 111: 47–54.

Strezov, V.; M. Patterson; V. Zymla; K. Fisher; T.J. Evans; P.F. Nelson. 2007. Fundamental aspects of biomass carbonisation. Journal of Analytical and Applied Pyrolysis 79: 91-100.

Sulistyo, J.; T, Hata; S. Honma; R. Asakura; S.N. Marsoem. 2013. Green aromatics from catalytic fast pyrolysis of fast-growing meranti biomass. Wood Research Journal 40: 13-18.

Tsuge, S.; H. Ohtani; C. Watanabe. 2011. Pyrolysis-GC/MS data book of synthetic polymers. Pyrograms, thermograms and MS of pyrolyzates. Elsevier. UK.

Vitolo, S.; B. Bresci; M. Seggiani; M.G. Gallo. 2001. Catalytic upgrading of pyrolytic oils over HZSM-5 Zeolite: Behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuels 80:17-26.

Wang, Z.; A.G. McDonald; R.J. Westerhof; S.R. Kersten; C.M. Cuba-Torres; S. Ha; B. Pechad; M. Garcia-Perez. 2013. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. Journal of Analitical and Applied Pyrolysis 100: 56-66.

Zheng, A.; L. Jiang; Z. Zhao; S. Chang; Z. Huang; K. Zhao; H. Li. 2016. Effect of hydrothermal treatment on chemical structure and pyrolysis behavior of eucalyptus wood. Energy and Fuels 30: 3057–3065.




DOI: https://doi.org/10.51850/wrj.2021.12.1.18-27

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Wood Research Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Indexed by:

                       

 

Copyright ©Wood Research Journal  

    ISSN: 2087-3840,       EISSN: 2774-9320

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.