Ultraviolet Shielding Performance of Coconut Coir as a Filler in Low-Density Polyethylene (LDPE) Plastic Mulch
Abstract
Plastic mulch is a layer of material applied to the soil surface to maintain moisture retention in the soil by preventing evaporation, reduce weed growth by blocking sunlight from reaching underlying weeds, and optimize fertilizer use by minimizing nutrient loss to the environment. However, the degradation of low-density polyethylene (LDPE), a thermoplastic commonly used for mulching, into microplastics due to exposure to UV radiation. This research explored the potential of coconut coir, a natural fiber with a high lignin content ranging from 30 to 46%, as a UV protective agent. The objective was to develop biodegradable plastic-based mulch composites that have better resistance to UV exposure by incorporating coir as a filler material in LDPE-based composites. Different ratios of coconut fiber were used (10%, 20%, 30%, and 40%), and Maleic anhydride grafted polyethylene (PE-g-MAH) was used as a binder at 2% of total weight mixed with LDPE in a rheomixer (80 rpm, 120°C for 10 min). The resulting plastic mulch bio-composites were evaluated for thermal, mechanical, UV resistance, and biodegradability properties. The results showed that the higher addition of coconut coir resulted in a decrease in the thermal and mechanical characteristics of the composite. However, the addition of higher coconut coir in the composite at 40% can provide an increase in the composite's resistance to ultraviolet light exposure, and the properties are easily degraded by the environment (biodegradable).
Keywords
Full Text:
PDFReferences
Adeniyi, A. G., Onifade, D. V., Ighalo, J. O., & Adeoye, A. S. (2019). A review of coir fiber reinforced polymer composites. Composites Part B: Engineering, 176(August), 107305. https://doi.org/10.1016/j.compositesb.2019.107305
Ahmad, J., Majdi, A., Al-Fakih, A., Deifalla, A. F., Althoey, F., El Ouni, M. H., & El-Shorbagy, M. A. (2022). Mechanical and Durability Performance of Coconut Fiber Reinforced Concrete: A State-of-the-Art Review. Materials, 15(10). https://doi.org/10.3390/ma15103601
Amaro-Ortiz, A., Yan, B., & D’Orazio, J. A. (2014). Ultraviolet radiation, aging and the skin: Prevention of damage by topical cAMP manipulation. Molecules, 19(5), 6202–6219. https://doi.org/10.3390/molecules19056202
Ashraf, A. (2014). FTIR & UV-Vis analysis of Polymer(Polystyrene, LDPE) samples. Polymer, 31(4), 765. https://doi.org/10.13140/2.1.3819.0880.
Blaustein, A. R., & Searle, C. (2013). Ultraviolet Radiation. Encyclopedia of Biodiversity: Second Edition, 7, 296–303. https://doi.org/10.1016/B978-0-12-384719-5.00147-7
Bouafif, H., Koubaa, A., Perré, P., Cloutier, A., & Riedl, B. (2008). Analysis of among-species variability in wood fiber surface using DRIFTS and XPS: Effects on esterification efficiency. Journal of Wood Chemistry and Technology, 28(4), 296–315. https://doi.org/10.1080/02773810802485139
Brahmakumar, M., Pavithran, C., & Pillai, R. M. (2005). Coconut fibre reinforced polyethylene composites: Effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Composites Science and Technology, 65(3–4), 563–569. https://doi.org/10.1016/j.compscitech.2004.09.020
Bukar, A. M., El-jummah, A. M., & Hammajam, A. A. (2022). Development and Evaluation of the Mechanical Properties of Coconut Fibre Reinforced Low Density Polyethylene Composite. Journal of Composite Materials, 12, 83–97. https://doi.org/10.4236/ojcm.2022.123007
Burhani, D., Sudarmanto, Wijayanto, A., Andreansyah, I., Widyawati, Y., Nurhamiyah, Y., Fransiska, D., Agustina, S., Banar Kusumaningrum, W., Fatriasari, W., & Aulya Syamani, F. (2023). Utilization of Indonesian seaweed in polyethylene-based composite with coconut husk powder as bio-compatibilizer. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2023.03.765
Cebe, P., Thomas, D., Merfeld, J., Partlow, B. P., Kaplan, D. L., Alamo, R. G., Wurm, A., Zhuravlev, E., & Schick, C. (2017). Heat of fusion of polymer crystals by fast scanning calorimetry. Polymer, 126, 240–247. https://doi.org/10.1016/j.polymer.2017.08.042
Diop, A., Mijiyawa, F., Koffi, D., Kokta, B. V., & Montplaisir, D. (2015). Study of lignin dispersion in low-density polyethylene. Journal of Thermoplastic Composite Materials, 28(12), 1662–1674. https://doi.org/10.1177/0892705714556829
Doğan, M. (2021). Ultraviolet light accelerates the degradation of polyethylene plastics. Microscopy Research and Technique, 84(11), 2774–2783. https://doi.org/10.1002/jemt.23838
Esmeraldo, M. A., Barreto, A. C. H., Freitas, J. E. B., Fechine, P. B. A., Sombra, A. S. B., Corradini, E., Mele, G., Maffezzoli, A., & Mazzetto, S. E. (2010). Dwarf-green coconut fibers: A versatile natural renewable raw bioresource. Treatment, morphology, and physicochemical properties. BioResources, 5(4), 2478–2501. https://doi.org/10.15376/biores.5.4.2478-2501
Freitas, B. R., Braga, J. O., Orlandi, M. P., Silva, B. P., Aoki, I. V, Lins, V. F. C., & Cotting, F. (2022). Characterization of coir fiber powder ( cocos nucifera L .) as an environmentally friendly inhibitor pigment for organic coatings. Journal of Materials Research and Technology, 19, 1332–1342. https://doi.org/10.1016/j.jmrt.2022.05.098
Gulmine, J. V., Janissek, P. R., Heise, H. M., & Akcelrud, L. (2002). Polyethylene characterization by FTIR. Polymer Testing, 21(5), 557–563. https://doi.org/10.1016/S0142-9418(01)00124-6
Hernawan, F. A., Syamani, F. A., & Kurniati, M. (2020). Biodegradable Mulch Based on Cellulose of Cornhusk with Addition Anti UV-Tinuvin. Journal of Physics: Conference Series, 1491(1). https://doi.org/10.1088/1742-6596/1491/1/012051
Hidalgo-salazar, M. A., Correa-aguirre, J. P., & García-navarro, S. (2020). Injection Molding of Coir Coconut Fiber Reinforced Polyolefin Blends : Mechanical , Viscoelastic , Thermal Behavior and Three-Dimensional Microscopy Study. 1–19. https://doi.org/10.3390/polym12071507
Hon, N.-S, D., & Shiraishi, N. (2000). Wood and Cellulosic Chemistry, Revised, and Expanded ((2nd ed.)). https://doi.org/https://doi.org/10.1201/9781482269741
Ichim, M., Stelea, L., Filip, I., Lisa, G., & Muresan, E. I. (2022). Thermal and Mechanical Characterization of Coir Fibre–Reinforced Polypropylene Biocomposites. Crystals, 12(9), 1–16. https://doi.org/10.3390/cryst12091249
Jose, S., Mishra, L., Basu, G., & Kumar Samanta, A. (2017). Study on Reuse of Coconut Fiber Chemical Retting Bath. Part II---Recovery and Characterization of Lignin. Journal of Natural Fibers, 14(4), 510–518. https://doi.org/10.1080/15440478.2016.1212772
Kong, Y., & Hay, J. N. (2003). The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. European Polymer Journal, 39(8), 1721–1727. https://doi.org/10.1016/S0014-3057(03)00054-5
Liu, E., Zhang, L., Dong, W., & Yan, C. (2021). Biodegradable plastic mulch films in agriculture: Feasibility and challenges. Environmental Research Letters, 16(1). https://doi.org/10.1088/1748-9326/abd211
Mahmud, M. A., Abir, N., Anannya, F. R., Nabi Khan, A., Rahman, A. N. M. M., & Jamine, N. (2023). Coir fiber as thermal insulator and its performance as reinforcing material in biocomposite production. Heliyon, 9(5), e15597. https://doi.org/10.1016/j.heliyon.2023.e15597
Menossi, M., Cisneros, M., Alvarez, V. A., & Casalongué, C. (2021). Current and emerging biodegradable mulch films based on polysaccharide bio-composites . A review. Agronomy for Sustainable Development, 41(53). https://doi.org/https://doi.org/10.1007/s13593-021-00685-0
Naveen, P. N. E., & Dharma Raju, T. (2013). Evaluation of mechanical properties of coconut coir fiber reinforced polymer matrix composites. Journal of Nano Research, 24(November 2018), 34–45. https://doi.org/10.4028/www.scientific.net/JNanoR.24.34
Onukwuli, S., Okpala, C., & Nnaemeka, F. (2022). Review of benefits and limitations of coir fiber filler material in composites. International Journal of Latest Technology, Management & Applied Science, 11(5), 13–20. https://hal.science/hal-04104230%0Ahttps://hal.science/hal-04104230/document
Prakash Bhuyar, Nurul Aqilah Binti Mohd Tamizi, Mohd Hasbi Ab. Rahim, Gaanty Pragas Maniam, & Natanamurugaraj Govindan. (2019). Effect of ultraviolet light on the degradation of Low-Density and High-Density Polyethylene characterized by the weight loss and FTIR. Maejo International Journal of Energy and Environmental Communication, 1(2), 26–31. https://doi.org/10.54279/mijeec.v1i2.244915
Puspaningrum, T., Haris, Y. H., Sailah, I., Yani, M., & Indrasti, N. S. (2020). Physical and mechanical properties of binderless medium density fiberboard (MDF) from coconut fiber. IOP Conference Series: Earth and Environmental Science, 472(1). https://doi.org/10.1088/1755-1315/472/1/012011
Sadeghifar, H., & Ragauskas, A. (2020). Lignin as a UV Light blocker-a review. Polymers, 12(5), 1–10. https://doi.org/10.3390/POLYM12051134
Sari, D. N., Rois, M. F., Widiyastuti, W., & Setyawan, H. (2022). Organosolv lignin from coconut coir as potential biomaterials for sunscreen. AIP Conference Proceedings, 2470(February 2023). https://doi.org/10.1063/5.0080768
Serrano-ruiz, H., Martin-closas, L., & Pelacho, A. M. (2020). Biodegradable plastic mulches: Impact on the agricultural biotic environment. Science of the Total Environment, 750, 141228. https://doi.org/10.1016/j.scitotenv.2020.141228
Suzuki, S., & Nakashima, S. (1999). In-situ IR measurements of OH species in quartz at high emperatures. Physics and Chemistry of Minerals, 26(3), 217–225. https://doi.org/10.1007/s002690050180
Szlachetka, O., Witkowska-dobrev, J., Bary, A., & Dohojda, M. (2021). Low-density polyethylene ( LDPE ) building films – Tensile properties and surface morphology. Journal of Building Engineering, 44, 103386. https://doi.org/10.1016/j.jobe.2021.103386
Vázquez Fletes, R. C., & Rodrigue, D. (2021). Effect of wood fiber surface treatment on the properties of recycled hdpe/maple fiber composites. Journal of Composites Science, 5(7). https://doi.org/10.3390/jcs5070177
DOI: https://doi.org/10.51850/wrj.2023.14.1.13-24
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Wood Research Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Indexed by:
Copyright ©Wood Research Journal
ISSN: 2087-3840, EISSN: 2774-9320

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









