Characterization of Poplar Overexpressing Xylanase

Yong Woo Park, Kei’ichi Baba, Yuzo Furuta, Keisuke Kojiro, Masato Yoshida, Takahisa Hayashi


We expressed Hordeum vulgare (barley) xylanase constitutively in Populus tremula x alba (poplar). The expression of xylanase reduced not only the amount of hemicellulose but also the amount of lignin in the secondary xylem. Stem and leaf growth rates were accelerated in transgenic plants. The stems also developed increased flexibility, especially in their younger parts, specifically, the regions above the 10th internode from the top. The secondary walls in the xylem would be slower to mature in xylanase-expressing poplar than in the wild type.


xylan; transgenic; xylanase; secondary wall; xylem differentiation.

Full Text:



Adler, E.; G. Brunow; K. Lundquist. 1987. Investigation of the Acid-catalyzed Alkylation of Lignin by Means of NMR Spectroscopic Methods. Holzforschung 41: 199-207.

Aspinall, G.O. 1959. Structural Chemistry of the Hemicelluloses. Adv Carbohydr Chem 14: 429-468.

Bailey, M.J.; P. Biely; K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23: 257-270.

Beg, Q.K.; M. Kapoor; L. Mahajan; G.S. Hoondal. 2001. Microbial Xylanases and their Industrial Applications: A review. Appl Microbiol Biotechnol 56: 326-338.

Berlin, A.; N. Gilkes; A. Kurabi; R. Bura; M. Tu; D. Kilburn; J. Saddler. 2005. Weak Lignin-binding Enzymes: A Novel Approach to Improve the Activity of Cellulases for Hydrolysis of Lignocellulosics. Appl Biochem Biotechnol 121: 163-170.

Berlin, A.; M. Balakshin; N. Gikes; J. Kadla; V. Maximenko; S. Kudo; J. Saddler. 2006. Inhibition of Cellulase, Xylanese and β-glucosidase Activities by Softwood Lignin Preparations. J Biotech 125: 198-209.

Boussaid, A.; J. Robinson; Y. Cai; D.J. Gregg; J. Saddler. 1999. Fermentability of the Hemicellulose-derived Sugars from Steam-exploded Softwood (Douglas-fir). Biotechnol Bioeng 64: 284-289.

Bura, R.; S. Mansfield; R. Bothast; J. Saddler. 2002. SO2-catalyzed Steam Explosion of Corn Fiber for Ethanol Production. Appl Biochem Biotechnol 98: 59-72.

Fukushima, R.S.; R.D. Hatfield. 2004. Comparison of the Acetyl Bromide Spectrophotometric Method with Other Analytical Lignin Methods for Determining Lignin Concentration in Forage Samples. J Agric Food Chem 52: 3713-3720.

Hacke, U.G.; J.S. Sperry; W.T. Pockman; S.D. Davis; K.A. McCelloch. 2001. Trends in Wood Density and Structure are Linked to Prevention of Xylem Implosion by Negative Pressure. Oecelogia 126: 457-461.

Jones, L.; A.R. Ennos; S.R. Turner. 2001. Cloning and Characterization of irregular xylem4 (irx4): A Severely Lignin-deficient Mutant of Arabidopsis. Plant J 26: 205-216.

Kulkarni, N.; A. Shendye; M. Rao. 1999. Molecular and Biotechnological Aspects of Xylanases. FEMS Microbiol Rev 23: 411-456.

Niklas, K. 1992. Plant Biomechanics: An Engineering Approach to Plant Form and Function. Chicago: Univ. of Chicago Press.

Park, Y.W.; K. Baba; Y. Furuta; I. Iida; K. Sameshima; M. Arai; T. Hayashi. 2004. Enhancement of Growth and Cellulose Accumulation by Overexpression of Xyloglucanase in Poplar. FEBS Lett 564: 183-187.

Prade, R.A. 1995. Xylanases: From Biology to Biotechnology. Biotech Genet Eng Rev 13: 100-131.

Shallom, D.; Y. Shoham. 2003. Microbial Hemicellulases. Curr Opin Microbiol 6: 219-228.

Singh, S.; A.M. Madlala; B.A. Prior. 2003. Thermomyces Lanuginosus: Properties of Strains and their Hemicellulases. FEMS Microbiol Rev 27: 316.

Teather R.M.; P.J. Wood. 1982. Use of Congo-red Polysaccharide Interactions in Enumeration and Characterization of Cellulololytic Bacteria from the Bovine Rumen. Appl Environm Microbial 43: 777-480.

Timell, T.E. 1967. Recent Progress in the Chemistry of Wood Hemicelluloses. Wood Sci Technol 1: 45-70.



  • There are currently no refbacks.

Copyright (c) 2017 Wood Research Journal

Indexed by:




Copyright ©Wood Research Journal  

    ISSN: 2087-3840,       EISSN: 2774-9320



WRJ is licensed under a Creative Commons Attribution 4.0 International License