Profil Suhu dan Kadar Air Kayu dalam Pengeringan Oven Pemanas dan Gelombang Mikro (Temperature and Moisture Content Profiles of Woods in Heating and Microwave Ovens Drying)

Trisna Priadi, Gunes T W Giyarto

Abstract


This research aimed to evaluate the profile of temperature and moisture content in Pinus oocarpa wood being dried with heating oven and microwave oven.  The size of samples were (25x70x120) mm3.  The temperature profiles in heating oven and microwave oven drying were taken every 10 minutes and 0.5 minutes, respectively. The moisture profiles in heating oven and microwave oven drying were made in every 24 hours and 10 minutes, respectively.  The heating oven was set at 60 °C, while microwave oven was set for 2 minutes intermittently with 5 minutes break.  In microwave drying, the temperature inside the boards increased faster and higher compared to that in the heating oven, which resulted in a faster moisture movement to the board’s surface.  The drying rate of pine increased 48-72 times in microwave compared to that in heating oven.  The moisture content in the centre of boards being dried in heating oven was much higher than that of in the outer parts.  On the other hand, the moisture profile in the woods being dried in microwave oven distributed more evenly.

Keywords


microwave, moisture content, pine wood, temperature profile, wood drying

Full Text:

PDF

References


Antti AL. 1995. Microwave drying of pine and spruce. Holz als Roh-und Werkstoff. 53:333-338. https://doi.org/10.1007/s001070050102.

Balboni BM, Ozarska B, Garcia JN, Torgovnikov G. 2018. Microwave treatment of Eucalyptus macrorhyncha timber for reducing drying defects and its impact on physical and mechanical wood properties. Eur. J. Wood Prod. 76:861–870. https://doi.org/10.1007/s00107-017-1260-1.

Bečkovský D, Vacková L, Bečkovská T, Sobotka J, Pěnčík J, Lavický M. 2016. Analysis of the diffusional properties of peripheral walls of wooden houses during Emw radiation exposure. Wood Res. 61(4): 627-636.

Buffler CR. 1993. Microwave Cooking and Processing. New York: The AVI Publ. Co.

Cavalheiro RS, Almeida DH, Almeida TH, Christoforo AL, Lahr FAR. 2016. Density as estimator of shrinkage for some Brazilian wood species. Int. J. Mater. Eng. Innov. 6(3):107-112. doi: 10.5923/j.ijme.20160603.08.

Christine DP, Syaufina L., Santosa G. 2017. The effect of various types of forest fires on pine resin productivity in Gunung Walat University Forest, Sukabumi, Indonesia. Biodiversitas. 18(1):476-482. https://doi.org/10.13057/biodiv/d180158.

Dedic A, Zlatanovic M. 2001. Some aspects and comparisons of microwave drying of beech (Fagus moesiaca) and fir wood (Abies alba). Holz als Roh- und Werkstoff. 59:246-249. https://doi.org/10.1007/s001070100204.

Harris GA, Brodie GI, Ozarska B, Taube A. 2011. Design of a microwave chamber for the purpose of drying of wood components for furniture. ASABE. 54(1):363-368.

Hartulistiyoso E. 2000. Penghematan energi pada proses pengelolaan rempah-rempah dengan energi gelombang mikro. Prosiding Seminar Nasional Teknik Pertanian AE; 2000 Juli 11-12; Bogor, Indonesia.

Hasanati M, Itaya Y. 1996. Drying-induced strain and stress: a review. Dry. Technol. 14(5):1011-1040.

He Q, Wang X. 2015. Drying stress relaxation of wood subjected to microwave radiation. Bioresources. 10(3):4441-4452.

Henin JM, Charron S, Luypaert PJ, Jourez B, Hebert J. 2008. Strategy to control the effectiveness of microwave treatment of wood in the framework of the implementation of ISPM 15. For. Prod. J. 58(12):75-81.

Hermawan A, Fujimoto N, Sakagami H. 2012. Effects of high-temperature and low-humidity pretreatment on the drying properties of sugi boxed-heart timber with black-colored heartwood. Dry. Technol. 30(7):780-786.

Keey RB, Langrish TA, Walker J C. 2012. Kiln-Drying of Lumber. Berlin: Springer Science & Business Media.

Li ZY, Wang RF, Kudra T. 2011. Uniformity issue in microwave drying. Dry. Technol. 29(6):652-660.

Listyanto T, Ando K, Yamauchi H, Hattori N. 2013. Microwave and steam injection drying of CO2 laser incised sugi lumber. J. Wood Sci. 59(4):282-289. DOI 10.1007/s10086-013-1331-9.

Listyanto T, Ando K, Yamauchi H, Hattori N. 2016. CO2 Laser–incised teak and mahogany lumber dried by microwave and steam injection. For. Prod. J. 66(7-8):461-466. https://doi.org/10.13073/FPJ-D-15-00082.

Moutee M, Fortin Y, Fafard M. 2007. A global rheological model of wood cantilever as applied to wood drying. Wood Sci Technol. 41(209). https://doi.org/10.1007/s00226-006-0106-5.

Mujumdar AS. 2000. Drying Technology in Agricultural and Food Sciences. Cambride: Wood Head Publishing.

Mujumdar AS, Law CL. 2010. Drying technology: trends and applications in postharvest processing. Food Bioprocess Technol. 3(6):843-852.

Novotný M, Šuhajda K, Sobotka J, Gintar J, Šuhajdová E, Mátl M. 2014. Use of microwave radiation in building industry through application of wood element drying. Wood Res. 59(3):389-400.

Ouertani S, Hassini L, Azzouz S, Torres SS, Belghith A, Koubaa A. 2015. Modeling of combined microwave and convective drying of wood: Prediction of mechanical behavior via internal gas pressure. Dry. Technol. 33(10):1234-1242. https://doi.org/10.1080/07373937.2015.1022828.

Ouertani S, Koubaa A, Azzouz S, Bahar R, Hassini L, Belghith A. 2018. Microwave drying kinetics of jack pine wood: determination of phytosanitary efficacy, energy consumption, and mechanical properties. Eur. J. Wood Prod. 76:1101–1111. https://doi.org/10.1007/s00107-018-1316-x.

Rattanadecho P, Makul N. 2016. Microwave-assisted drying: a review of the state-of-the-art. Dry. Technol. 34(1):1-38.

Skaar C. 2012. Wood-water relations. Berlin: Springer Science & Business Media.

Tang J, Resurrection Jr. FP. 2009. Development of Packaging and Products for Use in Microwave ovens. Washington State University: Woodhead Publishing Limited.

Torgovnikov G, Vinden P. 2010. Microwave wood modification technology and its applications. For. Prod. J. 60(2):173-182.

Vallejos J, Moya R, Serrano R. 2015. Effects of thinning on diameter, heartwood, density and drying defects of Gmelina arborea. Maderas: Cienc. Tecnol. 17(2):365-372. DOI: 10.4067/S0718-221X2015005000034.

Yang L, Liu H, Cai, Y, Hayashi K, Wu Z. 2014. Effect of drying conditions on the collapse-pronewood of Eucalyptus urophylla. Bioresources. 9(4):7288-7298.

Zhang J, Liu H, Yang H, Yang L. 2020. Drying characteristics of Eucalyptus urophylla x E. grandis with Supercritical CO2. Materials. 13(3989):1-13. doi:10.3390/ma13183989.

Zhang Y, Jia K, Cai L, Shi SQ. 2013. Acceleration of moisture migration in larch wood through microwave pre-treatments. Dry. Technol. 31(6): 666-671.




DOI: https://doi.org/10.51850/jitkt.v17i2.517

DOI (PDF): https://doi.org/10.51850/jitkt.v17i2.517.g432

Refbacks

  • There are currently no refbacks.




Jurnal Ilmu dan Teknologi Kayu Tropis Indexed by:

     

 

ISSN: 1693-383              EISSN: 2656-0178