Optimasi Aktivasi Arang Aktif dari Arang Hidro Tempurung Buah Kelapa Sawit Menggunakan Metodologi Permukaan Respon (Optimization of Activated Carbon from Oil Palm Shell Hydrochar Using Response Surface Methodology)

Ismail Budiman, Dede Hermawan, Fauzi Febrianto, Subyakto Subyakto, Gustan Pari

Abstract


In this study, activated carbon was prepared using hydrochar derived from oil palm shell through hydrothermal carbonization (HTC), and activated by 5% kalium hydroxide (KOH). The activation process was carried out using a temperature of 700 °C - 800 °C, with activation time of 60-120 minutes. The parameters of the activation process were optimised by response surface methodology (RSM). The central composite design (CCD) is used to determine the effect of activation temperature and activation time on some responses i.e. proximate analysis, ultimate analysis, methylene blue number, iodine number, electrical conductivity, yield percentage, and some gas pollutants adsorption. The results showed that almost all of activated charcoal met the technical standard of activated charcoal of SNI 06-3730-1995 for moisture content, ash content, volatile matter, fixed carbon, iodine number, and methylene blue number. The optimum conditions for the activation process involving the response observed were at 787.85 °C for 116.52 minutes

Keywords


activated carbon; central composite design; oil palm shell; optimization; response surface methodology; desain komposit terpusat, karbon aktif; metodologi permukaan respon; optimasi; tempurung buah sawit

Full Text:

PDF

References


Cochran WG, Cox GM. 1992. Experimental Designs. New York (US). John Wiley & Sons, Inc.

Direktorat Jenderal Perkebunan, Kementerian Pertanian. 2016. Statistik Perkebunan Indonesia 2015-2017 Kelapa Sawit. Direktorat Jenderal Perkebunan – Kementerian Pertanian. Jakarta (ID).

Falco C, Maco-Lozarr JP, Salinas-Torres D, Morallon E, Cazorla-Amoros D, Titirici MM, Lozano-Castello D. 2013. Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon. 62:246-355.

Guo J, Luo Y, Lua AC, Chi RA, Chen YL, Bao XT, Xiang SX. 2007. Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil-palm shell. Carbon. 45:330-336.

Hambali E, Rivai M. 2017. The potential of palm oil waste biomass in Indonesia in 2020 and 2030. IOP Conference Series: Earth and Env Sci. 65:012050.

Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH. 2017. Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J Env Manag. 203:237-244.

Jain A, Aravindan V, Jayaraman S, Kumar PS, Balasubramanian R, Ramakrishna S, Madhavi S, Srinivasan MP. 2013. Activated carbon derived from coconut shells as high energy density cathode material for Li-ion capasitors. Sci Reports. 3:3002.

Jain A, Jayaraman S, Balasubramanian R, Srinivasan MP. 2014. Hydrothermal pre-treatment for mesoporous carbon synthesis: enhancement of chemical activation. J Mater Chem A. 2(2): 520-528.

Jain A, Balasubramanian R, Srinivasan MP. 2015. Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediate hydrothermal treatment for adsorption applications. Chem Eng J. 273: 622-629.

Jain A, Balasubramanian R, Srinivasan MP. 2016. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem Eng J. 283:789-805.

Lee KK, Hao W, Gustafsson M, Tai CW, Morin D, Bjorkman E, Lilliestrale M, Bjorefors F, Andersson AM, Hedin N. 2016. Tailored activated carbon for supercapasitors derived from hydrothermally carbonized sugars by chemical activation. RSC Advances. 6:110629-110641.

Nizamuddin S, Jayakumar NS, Sahu JN, Ganesan P, Bhutto AW, Mubarak NM. 2015. Hydrothermal carbonization of oil palm shell. Korean J Chem Eng. 32(9):1789-1797.

Pari G. 2004. Kajian struktur arang aktif dari serbuk gergaji kayu sebagai adsorben emisi formaldehida kayu lapis. [Disertasi]. Program Studi Ilmu Pengetahuan Kehutanan. Bogor. Sekolah Pasca Sarjana IPB.

Raposo F, Rubia MADL, Borja R. 2009. Methylene blue number as useful indicator to evaluate the absorptive capacity of granular activated carbon in batch mode: influence of adsorbate/adsorbent mass ratio and particle size. J Hazard Mater. 165(1-3):291-299.

[SNI] Standar Nasional Indonesia. 1995. Arang Aktif Teknis. SNI 06-3730-1995. Jakarta (ID): Badan Standardisasi Nasional.

Yang H, Yan R, Chen H, Lee DH, Zheng C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86:1781-1788.


Refbacks

  • There are currently no refbacks.




Jurnal Ilmu dan Teknologi Kayu Tropish Indexed by: