Fast-Growing Wood-Polymer Nano Composite Characteristics through Nano-SiO2 Impregnation
Abstract
Keywords
Full Text:
PDFReferences
American Society for Testing and Materials. 1991. Standard Method of Evaluating Wood Preservatives by Field Test Stakes. D 1758-06. Annual Book Of ASTM Standars, vol. 04.09 (Wood). American Standard Institution, New York.
American Standard for Testing and Materials, 2000. Standard Test Methods for Small Clear Specimens of Timber. ASTM D 143-94. Annual Book of ASTM Standard. American Standard Institution, New York.
Bajia, S.; R. Sharma; B. Bajia. 2009. Solid-State Microwave Synthesis of Melamine. J. Chem. 6(1): 120-124.
Bowyer, J.L.; R. Shmulsky; J.G. Haygreen. 2007. Forest Product and Wood Science an Introduction Fifth Edition. Blackwell Publishing Professional, Iowa.
British Standard. 1957. Methods of Testing Small Clear Specimen of Timber. BS 373:1957. In Annual Book of BS Standard. British Standard Institution, London.
Chira, A.; A. Kumar; T. Vlach; L. Laiblova; A. Skapin; P. Hajek. 2016. Property Improvement of Alkali Resistant Glass Fibres/Epoxy Composite Nanosilica for Textile Reinforced Concrete Applications. Mater Design. 89: 146-155.
Darmawan, W.; D. Nandika; I. Rahayu; M. Fourier; R. Marchal. 2013. Determination of Juvenile and Mature Transition Ring for Fast Growing Sengon and Jabon Wood. J. Indian Aca. Wood Sci. 10: 39-47.
El-Bandary, H.M.; A.A. El-Helaly. 2013. First Record Nanotechnology In Agricultural: Silica Nanoparticles A Potential New Insecticide for Pest Control. App. Sci. Report. 4(3): 241-246.
Hazarika, A.; T.K. Maji. 2013. Properties of Softwood Polymer Composites Impregnated with Nanoparticles and Melamine Formaldehyde Furfuryl Alcohol Copolymer. J. Poly.r Engine. Sci. 54(5): 1019-1029.
Hill, C. 2006. Wood Modification. John Wiley & Sons, Sussex.
Hoseini, S.B.; S. Hedjazi; L. Jamalirad; A. Sukhtesaraie. 2014. Effect of Nano-Sio2 on Physical and Mechanical Properties of Fiber Reinforced Composite (Frcs). J. Indian Aca. Wood Sci. 11(2): 116-121
Khoerudin, R. 2021. Physical Properties, Mechanical Properties and Durability of Fast Growing Wood Impregnated with Nano Silica Betung Bamboo Stems [Thesis]. Bogor Agricultural Institute, Bogor.
Laksono, G.D. 2019. Determination of Transition Points of Juvenile Wood to Mature Wood in Ganitri Wood [Thesis]. Bogor Agricultural Institute, Bogor.
Mardikanto, T.R.; L. Karlinasari; E.T. Bahtiar. 2011. Mechanical Properties of Wood. IPB Press, Bogor.
Martawijaya, A.; I. Kartasujana; Y. Mandang; S. Prawira; K. Kadir. 2005. Indonesian Wood Atlas Volume II. Forestry Research and Development Agency, Ministry of Forestry, Bogor.
Indonesian Timber Construction Regulations. PPKI NI-5. 1961. Department of Public Works and Electric Power, Bandung.
Pandit, I.K.N.; D. Nandika; I.W. Darmawan. 2011. Analysis of The Basic Properties of Wood from Community Plantation Forests. J.Of Indo. Agri. Sci. 16(2): 119-124.
Prihatini, E. 2020a. Improving The Physical Properties of Fast Growing Wood Through Impregnation of Nano-Sio2 Particles [Thesis]. Bogor Agricultural Institute, Bogor.
Prihatini, E.; A. Maddu; I.S. Rahayu; M. Kurniati. 2020b. Basic Properties of Ganitri Wood (Elaeocarpus sphaericus (Gaertn.) K. Schum.) from Sukabumi and its Potential Uses. J. of For. Sci. 14: 109-118.
Rahayu, I.S.; I.W. Darmawan; L. Zaini; E. Prihatini. 2020. Characteristic of fast growing wood impregnated with nano particles. J. of For. Research. 31: 677-685.
Rahman, E. 2012. Study of The Potential Utilization of Ganitri Species (Elaeocarpus Spp.). J. Plant. For. Part. 7 (2): 39-50.
Riadhi, M.R. 2017. Mechanical Properties and Durability of Monoethylene Glycol and Nano-SiO2 Impregnated Sengon Wood. [Thesis]. Bogor Agricultural Institute, Bogor.
Indonesian National Standard. 2014. Resistance Test of Wood and Wood Products against Wood Destroying Organisms. National Standardization Agency. (SNI) 01-7207-2014, Jakarta.
Sani, A. 2015. Durability, Durability and Drying Properties of Ganitri Wood (Elaeocarpus Sphaericus Schum) from Sukabumi. [Thesis]. Bogor Agricultural Institute, Bogor.
Tampubolon, A.E.; S. Oemry; L. Lubis. 2015. Viability Test of Subterranean Termites (Coptotermes Curvignathus Holmgren) (Isoptera: Rhinotermitidae) in Various Wood Media in The Laboratory. J. Agroecotechnology Online. 3(3): 864-869.
Thygesen, L.G.; S. Barsberg; T.M. Venas. 2009. The Fluorescence Characteristics of Furfurylated Wood Studied by Fluorescence Spectroscopy and Confocal Laser Scanning Microscopy. Wood Sci.Tech. 44: 51-65.
Yao, M.; Y. Yang; J. Song; Y. Yu; Y. Jin. 2017. Melamine Formaldehyde Modified Furfurylation to Improve Chinese Fir’s Dimensional Stability and Mechanical Properties. Bioresources. 12(2): 3057-3066.
Zhang, X.Q.; L.H. Yin; M. Tang; Y.P. Pu. 2011. ZnO2, TiO2, SiO2, and Al2O3 Nanoparticle – induced Toxic Effect on Human Fetal Lung Fibroblast. Biomedical and Environt Sci. 24(6): 661-669.
Zhuang, C.; Y. Chen. 2019. The Effect of Nano-Sio2 on Concrete Properties: A Review. Nanotechnology. 8(1): 562-572.
DOI: https://doi.org/10.51850/wrj.2022.13.2.69-78
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Wood Research Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Indexed by:
Copyright ©Wood Research Journal
ISSN: 2087-3840, EISSN: 2774-9320

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








