Thermoelectric Properties of Porous SiC/SiO2/C Composite from Carbonized Cryptomeria japonica Wood

Joko Sulistyo, Hiroyuki Kitagawa, Sri Nugroho Marsoem

Abstract


Electric power generation by thermoelectric material utilizing radiated heat of from roof’s house, engine and others is potential clean energy in tropical areas such as Indonesia. In this study, thermoelectric materials such as silicon carbide (SiC/SiO2/C) composites were developed from carbonized Cryptomeria japonica wood infiltrated ethyl silicate-40 by sintering at 1400, 1600 and 1800 ºC for 30 min under N2 atmosphere. This study aimed to examine the morphology, microstructure and thermoelectric properties of porous SiC/SiO2/C composites. SiC/SiO2/C composites sintered at 1600 ºC with low value of thermal conductivity was potential for the development of thermoelectric material. The oxidation of SiC/SiO2/C composite sintered at 1600 °C which removed parts of residual silica and carbon, transformed the composite exhibiting p-type semiconductor with low values of Seebeck coefficient of to that exhibiting n-type semiconductor with high values Seebeck coefficient. A maximum of figure of merit of 6.25 x 10--5 K-1 was obtained at 140 ºC in the oxidized SiC/SiO2/C composite sintered at 1600 °C. The comparatively high figure of merit indicates the potentiality the material for thermoelectric purpose.

Keywords


Thermoelectric properties; silicon carbide; carbonized wood; silica

Full Text:

PDF

References


Anatychuk, L.I. 2012. Thermoelectris and Its Energy Harvesting: Materials, Preparation, and Characterization. In Thermoelectrics. D.M. Rowe (ed.). CRC Press. Boca Raton.

Balat, M.; M. Balat; E. Kirtay; H. Balat. 2009. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management 50(12): 3147-3157.

Carlson, T.R.; G.A. Tompsett; W.C. Conner; G.W. Huber. 2009. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Topics in Catalysis 52: 241–252.

Carpenter, N.E. , 2014. Chemistry of Sustainable Energy. CRC Press, Boca Raton. pp.1-18.

Cheung, T.L.Y.; D.H.L. Ng. 2007. Conversion of bamboo to biomorphic composites containing silica and silicon carbide nanowires. Journal of American Ceramic Society 90: 559-564.

French, F.; S. Czernik. 2010. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology 91: 25-32.

Fujisawa, M.; T. Hata; P. Bronsveld; V. Castro; F. Tanaka; H. Kikuchi; Y. Imamura. 2005. Thermoelectric properties of SiC/C composites from wood charcoal by pulse current sintering. Journal of the European Ceramic Society 25: 2735-2738.

Fujisawa; M.; T. Hata; H. Kitagawa; P. Bronsveld; Y. Suzuki; K. Hasezaki; Y. Noda; Y. Imamura. 2008. Thermoelectric properties of porous SiC/C composites. Renewable Energy 33: 309-313.

Ishimaru, K.; T. Hata; P. Bronsveld; Y. Imamura. 2007. Microsectioning study of carbonized wood after cell wall sectioning Journal of Materials Science 42: 2662-2668.

Ivanova, L.M.; P.A. Aleksandrov; K.D. Demakov. 2006. Thermoelectric properties of vapor-grown polycrystalline cubic SiC. Inorganic Materials 42: 1205-1209.

Ito, M.; T. Tanaka; S. Hara. 2004. Thermoelectric properties of β-FeSi2 with electrically insulating SiO2 and conductive TiO dispersion by mechanical alloying. Journal of Applied Physics 95: 6209-6215.

Mavrokefalos, A.; M.T. Pettes; F. Zhou; L. Shi. 2007. Four-probe measurements of the in-plane thermoelectric properties of nanofilms. The Review of Scientific Instruments 78(3): 034901 - 034901-6.

Noudem, J.G.; S. Lemonnier; M. Prevel; E.S. Reddy; E. Guilmeau; C. Goupil. 2008. Thermoelectric ceramics for generators. Journal of the European Ceramic Society 28: 41-48.

Oliveira, J.S. de; P.M. Leite; L.B. de Souza; V.M. Mello; E.C. Silva; J.C. Rubim; S.M.P. Meneghetti; P.A.Z Suarez. 2009. Characteristics and composition of Jatropha gossypiifolia and Jatropha curcas L. oils and application for biodiesel production. Biomass and Bioenergy 33 (3): 449-453.

Pappacena, K.E.; K.T. Faber; H. Wang; W.D. Porter. 2007. Thermal conductivity of porous silicon carbide derived from wood precursors. Journal of the American Ceramic Society 90 (9): 2855-2862

Sassner, P.; G. Zacchi. 2008. Integration options for high energy efficiency and improved economics in a wood-to-ethanol process. Biotechnology for Biofuels 4: 1-11.

Shin, Y.; G.J. Exarhos. 2007. Conversion of cellulose materials into nanostructured ceramics by biomineralization. Cellulose 14: 269-279..

Sulistyo, J.; T. Hata; H. Kitagawa; P. Bronsveld; M. Fujisawa; K. Hashimoto; Y. Imamura. 2010. Electrical and thermal conductivity of porous SiC/SiO2/C with different morphology from carbonized wood. Journal of Materials Science 45: 1107-1116.

Shiryaev, A.A.; M. Wiedenbeck; V. Reutsky; V.B. Polyakov; N.N. Melnik; A.A. Lebedev; R. Yakimova. 2008. Isotopic heterogeneity in synthetic and natural silicon carbide. Journal of Physics Chemistry Solid 69: 2492-2498.

Wang, S.Y.; C.P. Hung. 2003. Electromagnetic shielding efficiency of the electric field of charcoal from six wood Species. Journal of Wood Science 49: 450-454.

Wei, W.; J. Li; H. Zhang; X. Cao; C. Tian; J. Zhang. 2007. Macrostructural influence on the thermoelectric properties of SiC ceramics. Scripta Materialia 57(12): 1081-1084.




DOI: https://doi.org/10.51850/wrj.2021.12.2.61-68

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Wood Research Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Indexed by:

                       

 

Copyright ©Wood Research Journal  

    ISSN: 2087-3840,       EISSN: 2774-9320

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.