The Changes in Microstructure and Thermal Constant in Conversion of Carbonized Wood to Silicon Carbide Composite

Joko Sulistyo, Sri Nugroho Marsoem, Toshimitsu Hata


Carbonized wood which possesses microstructure with random orientation graphitic crystallites and with pores between the graphitic crystallites, is potentially developed into new material of silicon carbide (SiC) composite, a high performance material for engineering purposes. This paper investigates the development of the microstructure in the turbostratic carbon phase and the formation of SiC crystal from the reaction of carbon and SiO2. Results show the turbostratic microstructure in carbonized wood lead to the possible formation of SiC compound in the manufacturing of SiC/SiO2/Ccomposite. The heat treatment at 1800ºC on the mixture of SO2 and carbonized wood creates the formation of SiC compound, which improves the degree of microstructure ordering. The improvement of microstructure turbostratic carbon and the growth of graphitic crystallites in turbostratic carbon improves the thermal conductivity of SiC/SiO2/C composite comparingwith those of carbonized wood composite.


carbonized wood; SiC/SiO2/C composite; microstructure; thermal conductivity

Full Text:



Chung, D.D.L. 2002 Review Graphite. Journal of Materials Science 37: 1475-1489.

Byrne, C.E.; D.C. Nagle. 1997. Carbonization of Wood for Advanced Materials Applications. Carbon 35:259-266.

Fujisawa, M.; T. Hata; P. Bronsveld; V. Castro; F. Tanaka; H. Kikuchi; T. Furuno; Y. Imamura. 2004. SiC/C Composites Prepared from Wood-Based Carbons by Pulse Current Sintering with SiO2: Electrical and Thermal Properties. Journal of European Ceramic Society 24: 3575-3580.

Fujisawa, M.; T. Hata; P. Bronsveld; V. Castro; F. Tanaka;H. Kikuchi; Y. Imamura. 2005. Thermoelectric Properties of SiC/C Composites from Wood Charcoal by Pulse Current Sintering. Journal of European

Ceramic Society 25: 2735-2738.

Greil, P. 2001. Biomorphous Ceramics from Lignocellulosic, Journal of European Ceramic Society 21: 105-118.

Hata, T.; V. Castro; M. Fujisawa; Y. Imamura; S. Bonnamy; P. Bronsveld; H. Kikuchi. 2005. Formation of Silicon Carbide Nanorods from Wood Based Carbons. Fuller., Nanotub. and Carbon Nanostruct. 13: 107-113.

Kercher, A.K.; D.C. Nagle. 2003. Microstructural Evolution during Charcoal Carbonization by X-Ray Diffraction Analysis. Carbon 41: 15-27.

Liu, D.M.; B.W. Lin. 1996. Thermal Conductivity in HotPressed Silicon Carbide. Ceramics International 22: 407-411.

Paris O.; C. Zollfrank; G.A. Zickler. 2005. Decomposition and Carbonization of Wood Biopolymers-A Microstructural Study of Softwood Pyrolysis. Carbon 43: 53-66.

Parfeneva, L.S.; T.S. Orlova; N.F. Kartenko; N.V. Sharenkova; B.I. Smirnov; I.A. Smirnov; H. Misiorek; A. Jezowski; J. Mucha; A.R. de Arellano-Lopez; J Martinez-Fernandez; F.M. Varela-Feria. 2006. Thermal and Electrical Properties of a Whiteeucalyptus Carbon Preform for SiC/Si Ecoceramics. Phys. Sol. State 48: 441-446.

Rodriguez-Reinoso, F.; M. Molina-Sabio. 1992. Activated Carbon from Lignocellulosic Materials by Chemical

and/or Physical Activation: An Overview. Carbon 30: 1111-1118.

Subyakto; T. Hata; I. Ide; T. Yamane; S. Kawai. 2004. Fire Protection of a Laminated Veneer Lumber Joint by Wood Carbon Phenolic Spheres Sheeting, Journal of Wood Science 50: 157-161.

Sulistyo, J.; T. Hata; M. Fujisawa; K. Hashimoto; Y. Imamura; T. Kawasaki. 2009. Anisotropic Thermal Conductivity of Three-layer Laminated Carbongraphite Composites from Carbonized wood. Journal

of Materials Science (44): 734-744.

Sulistyo, J.; T. Hata ; H. Kitagawa; P. Bronsveld; M. Fujisawa; K. Hashimoto; Y. Imamura. 2010. Electrical and Thermal Properties with Different Morphology from Carbonized Wood. J. Materials Science 45:


Sulistyo, J.; T. Hata; S.N. Marsoem. 2012. Formation of SiC Rods in Composites of SiC/SiO2/C from Carbonized Wood Infiltrated with Ethylsilicate-40. Wood Research Journal 2(1): 34-41.

Tuinstra, J.; J.L. Koening. 1970. Raman Spectrum of Graphite. The Journal of Chemical Physics 53: 11261130.

Pulido, L.L.; T. Hata; Y. Imamura; S. Ishihara; T. Kajimoto. 1998. Removal of Mercury and Other Metals by Carbonized Wood Powder from Aqueous Solution of Their Salts, J. Wood Sci. 44: 237-243.

Wang, S.Y.; C.P. Hung. 2003. Electromagnetic Shielding Efficiency of the Electric Field of Charcoal from Six Wood Species, J. Wood Sci. 49: 450-454.

Ward, Y.; R.J. Young; R.A. Shatwell. 2004. Application of Raman Spectroscopy to the Analysis of Silicon Carbide Monofilaments. Journal of Materials Science 39: 6781-6790.

White, R.J. 2015. The Search for Functional Porous Carbons from Sustainable Precursors. In Porous Carbon Materials from Sustainable Precursors, Chapt. 1. Ed. R.J. White. RSC Green Chemistry No. 32. The Royal of Chemistry. Cambridge. UK.

Xie, X.; B. Goodell; Y. Qian; M. Peterson; J. Jellison. 2008. Significance of the Heating Rate on the Physical Properties of Carbonized Maple Wood. Holzforschung 62: 591-596.

Zhou, Y.; K. Hirao; K. Watari; Y. Yamauchi; S. Kanzaki. 2004. Thermal Conductivity of Silicon Carbide Densified with Rare-earth Oxide Additives. Journal of the European Ceramic Society 24): 265-270.

Zollfrank, C.; H. Sieber. 2005. Microstructure Evolution and Reaction Mechanism of Biomorphous SiSiC Ceramics. Journal of American Ceramic Society 88: 51-58.


  • There are currently no refbacks.